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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol 4
o Abbrevia- : Abbrevia-
Unit tion . Unit tion
Length._ ... l meter_ . _ .. __._____.. m foot (or mile) . . ...__.. ft (or mi)
Time. ... t gecond - ______________ 8 second (or hour)______ seo¢ (or hr)
Force.... ... F weight of 1 kilogram._.__ kg weight of 1 pound_____ Ib
Power. ... P horsepower (metric).______________ horsepower. . ____._... hp
Speed Vv {kilometers per hour______ kph miles per hour-______.. mph
peed. - - ---- meters per second_ _ _ ... mps feet per second..._____ fps .
2. GENERAL SYMBOLS
Weight=mg Kinematic viscosity

4

Standard acceleration of gravity=9.80665 m/s> »p Density (mass per unit volume)

or 32.1740 ft/sec? Standard density of dry air, 0.12497 kg-m™*-s? at 15° C
M ¥ and 760 mm; or 0.002378 1b-ft=* sec?

asS="7 Specific weight of ‘“standard” air, 1.2255 kg/m?® or
Moment of inertia==mk?. (Indicate axis of 0.07651 1b/cu ft

radius of gyration k& by proper subscript.)
Coeflicient of viscosity

3. AERODYNAMIC SYMBOLS

Area - T Angle of setting of wings (relative to thrust lihe)
Area of wing 7 Angle of stabilizer setting (relative to thrust
Gap line)
Span Q Resultant moment
Chord Q Resultant angular velocity
2
Aspect ratio, y R Reynolds number, pl/_l where /is a linear dimen-
N u
True air speed sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,

standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
4 of 1.0 m chord, 100 mps, the corresponding
s Reynolds number is 6,865,000)

Dynamic pressure, %sz

Lift, absolute coefficient Cp=

: D o« Angle of attack

Drag, absolute coefficient Cp=-5 g
e e coete 77g8 ) e Angle of downwash
Profile drag, absolute coefficient OD0=1 g o Angle of attack, infinite aspect ratio
v _ ¢ 2 Angle of attack, induced
v N :
Induced drag, absolute coefficient ODf:’l"l i 2 Angle of attack, absolute (measured from zero-
qS Iift position)

Parasite drag, absolute coefficient OD,,=2—)§ Y Flight-path angle

.
Cross-wind force, absolute coefficient O"‘:q%’

R
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THE EFFECT OF WALL INTERFERENCE UPON THE AERODYNAMIC CHARACTERISTICS OF AN
AIRFOIL SPANNING A CLOSED-THROAT CIRCULAR WIND TUNNEL

By Warter G. ViNCceENTI and DonaLp J. GRa®AM

SUMMARY

The results of a theoretical and experimental investigation of
wall interference for an airfoil spanning a closed-throat circular
wind tunnel are presented. Analytical equations are derived
which relate the characteristics of an airfoil in the tunnel at
subsonic speeds with the characteristies in free air. The
analysis takes into consideration the effect of fluid compressi-
bility and is based upon the assumption that the chord of the
airfoil is small as compared with the diameter of the tunnel.
The development is restricted to an untwisted, constant-chord
airforl spanwing the middle of the tunnel. Brief theoretical
consideration is also given to the problem of choking at high
speeds.  Results are then presented of tests to determine the low-
speed characteristics of an NACA 412 airfoil for two chord-
diameter rativs.  While, on the basis of these erperiments, no
appraisal i possible of the accuracy of the corrections at high
speeds, the data indicate that at low Mach nwmbers the analytical
results are valid, even for relatively large values of the chord-
diameter ratin.

INTRODUCTION

The design of modern bigh-pevformance airplanes requires,
insofar as possible, an accurate knowledge of airfoil profile
data at Reynolds and Mach numbers attained in {light.
Since the size and power of wind tunmels are subject to vari-
ous practical limitations, most existing tunnels, even if they
can provide the desired Mach number, are not capable of
attaining full-scale Reynolds numbers for all ight conditions.
To minimize this shortcomimg in tunnel tests of airfoil
profiles, it is therefore necessary to use models having as
large a chord as possible relative to the cross-sectional
dimensions of the tunnel test section.  In order to eliminate
the efleets of supporting struts and to exelude the indetermi-
nate tunnel-boundary interference involved in the testing
of large-chord airfoils of limited span, it has become common
practice in such tests to use aivfoils which completely span
the test section. Even for these so-called “through”
models, however, the tunnel-boundary interference can still
be considerable, and accurate correction must be made for
its effects if the tunnel data are to be used with confidence
in the caleulation of free-flicht airplane characteristics.

The tunnel-boundary interference for airfoils spanning
wind tunnels of various types has been the subject of numer-
ous theoretical and experimental investigations. The inter-
ference for rectangular tunnels having rigid walls normal to
the span of the airfoil and either rigid walls or free boundaries

parallel to the span has been discussed theoretically by sev-
eral writers. For example, Lock (reference 1), Glauert (ref-
erence 2), and Goldsteir. (reference 3), give the necessary
tunnel-wall corrections for an airfoil spanning a rectangular
tunnel in an incompressible fluid ; while Goldstein and Young
(reference 4) show how these corrections, as well as those for
any general case of interference in an incompressible fluid,
can be modified to take account of fluid compressibility.
Reference 5 gives the correciions for the compressible case
in a closed-throat rectangular tunnel, as well as a critical
discussion of the results of the previous references and some
experimental data from low-speed tests. Fage (reference 6)
also presents experimental drag data for several symmetrical
bodies of various sizes in a closed-throat rectangular tunnel.
Experimental and theoretical results for an airfoil spanning
a completely open-throat rectangular tunnel are given by
Stiiper (references 7 ard 8). The case of an airfoil spanning
an open-throat circular tunnel has been the subject of a
number of investigations, including theoretical treatments
by Glauert (reference 9), Stiper (references 7 and &), and
Squire (reference 10), and experimental measurements by
Stiper (references 7 and 8) and Adamson (reference 11).
Apparently, the case of the closed-throat circular tunnel has
received no attention.

Since this'last case is often encountered in practice, an in-
vestigation was made of the tunnel-wall interference at sub-
sonic speeds for a wing spanning a closed-throat cireular
tunnel. The present paper presents the results of this in-
vestigation. In the first part of the paper, analytical equa-
tions are derived relating the characteristics of the airfoil
i the tunnel with those in free air for a compressible fluid.
Some consideration is also given to the phenomenon of chok-
ing which occurs at high speeds. In the second part, the
ralidity of the theoretical results is examined by the analysis
of experimental data for an NACA 4412 airfoil for two ratios
of airfoil chord to tunnel diameter. The investigatio is
restricted to uatwisted constant-chord airfoils spanning the
middle of the tunnel.

THEORY

As in reference 5, the theorctical development of the
tunnel-wall corrections is divided conveniently into two gen-
eral sections.  First, the influence of the wall upon the field
of flow at the airfoil in the tunnel is determined. Second,
the aerodynamic characteristics of the airfoil in this field of
How are related to the corresponding quantities in free air.

1
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In this manner, simple formulas are finally obtained which
enable the prediction of the free-air characteristics when the
characteristics in the tunnel are known.

Again, as in reference 5, the analysis is based upon the
method of superposition. To this end, it is assumed that the
airfoil is of small thickness and camber, so that the induced
velocity is everywhere small as compared with the velocity
of the undisturbed stream. With this assumption, the total
induced veloeity at any point is the simple veetor sum of the
separate velocities induced at that point by the interference
between the tunnel wall and the airfoil camber, thickness,
and wake. Thus the effects of camber, thickness, and wake
may cach be analyzed separately and superposed to obtain
the desired result for the complete airfoil.  As pointed out
in reference 5, this procedure is permissible even in the com-
pressible fluid if the airfoil is of small thickness and camber
as assumed.

Before proceeding to the actual development of the theory,
it is useful to contrast the present problem with the problems
of through airfoils in the various types of rectangular tunnels
and in the open-throat circular tunnel. In the case of an
airfoil spanning a rectangular tunnel having rigid walls
normal to the span of the airfoil, the problem is relatively
simple.  If the effect of the boundary layer along the tunnel
walls is neglected, the flow is sensibly the same in all planes
normal to the span; that is, there is clearly no spanwise
variation in lift. The air flow is thus essentially two-dimen-
sional, and the interference problems of camber, thickness,
and wake can be analyzed by the customary means of a
system of images with axes parallel to the span of the airfoil
(references 1, 2, 3, and 5). This is true whether the tunnel
boundaries parallel to the span are fixed or free. 1n this
manner, tunnel-boundary corvections can be derived for
airfoils of moderately large chord as compared with the
height of the tunnel test section.

In the case of an airfoil spanning a completely free jet,
whether rectangular or circular in section, the lift necessarily
falls to zero at the boundary of the jet. There thus exists
in this case a pronounced spanwise variation in lift and an
attendant system of trailing vortices. In the existing treat-
ments of the problem, only the interference between these
trailing vortices and the jet boundaries is considered, the
interference effects associated with the chordwise distribu-
tion of bound vortices and with the airfoil thickness and
wake being completely neglected.  This procedure implies
the assumption that the chord of the airfoil is very small
relative to the dimensions ot the jet. In this manner, the
problem is reduced to a limiting case of the usual problem
of an airfoil partially spanning the jet, and, as in this latter
case, the compounent of downwash induced at the airfoil by
the interference between the walls and the trailing vortices
is one-half as great as the corresponding component an
infinite distance downstream. The theoretical determina-
tion of the wall interference may thus be treated as a prob-
lem of two-dimensional flow in a plane normal to the axis of
the tunnel infinitely far behind the airfoil.  The boundary
conditions for either the rectangular or circular jet are then
readily satisfied by the introduction of a suitable system of
image vortices with axes parallel to the axis of the tunnel

(references 7, 8, 9, and 10). This method of analysis, how-
ever, is inadequate if the chord of the airfoil is even moder-
ately large as compared with the dimensions of the jet.

The case of the airfoil spanning a closed-throat circular
tunnel is more complex than either of the foregoing problems.
Unlike the condition prevailing in the free jet, the lift in
this case need not fall to zero at the boundary—that is, at
the tunnel wall-—so that the spanwise variation in lift is
not necessarily large. In fact, as will be seen, the lift is
constant across the span of the airfoil, and no system of
trailing vortices cxists. The assumption of a very small
chord and the consequent reduction of the problem to a case
of two-dimensional flow in aplane infinitely far downstream
is thus without meaning. On the other hand,an analysis
for airfoils of moderately large chord in the manner em-
ployed in the case of the rectangular tunnel with rigid side
walls is not possible. In the closed-throat circular tunnel
the flow in all planes normal to the span of the airfeil is not.
the same, so that the effect of the bound vortices, and of the
airfoil thickness and wake as well, cannot be treated as a
problem in two-dimensional flow. Furthermore, the bound-
ary conditions at the tunnel wall cannot be satisfied for the
actual three-dimensional problem by any known system
of images.  The solution of the problem for the closed-throat
circular tunnel thus requires an analysis entirely different
from those employed in the previous instances.

INFLUENCE OF TUNNEL WALL UPON FIELD OF FLOW AT AIRFOIL

An approach to the problem of the airfoil spanning a
closed-throat circular tunnel is afforded by the work of von
Karmédn and Burgers in reference 12 (pp. 266 to 273), where
the velocity potential at an arbitrary point in the tunnel is
determined for a U-shape vortex of infinitesimal span in an
incompressible fluid.

-

FiGURE 1--FElementary U-shaped vortex in closed-throat cireular tunnel.
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A system of rectangular coordinates x, ¥, z is introduced
as shown in figure 1. The z-axis is taken on the center line
of the tunnel with its positive direction downstream. The
z-axis 1s positive downward, and the y-axis positive to the
left for an observer looking against the direction of flow.
An alternative system of cylindrical coorvdinates », w, 6 is
defined by the relations

Y—w cos 0
()

Z=w sin ¢

The positive direction of cireulation is defined so that a
vortex with positive cireulation exerts a force on the fluid in
the direction of the positive z-axis. In other words, the lift
force experienced by a positive vortex is in the negative z
direetion.  The velocity of the fluid in the undisturbed
stream is denoted by V7 and the radius of the tunnel by r.
Other symbols are defined as introduced in the text. A list
of the more important symbols and their definitions is given
m Appendix C.

Consider now a U-shape vortex of infinitisimal span dy
paralle]l to the y-axis and situated in the yz-plane at the point
N=wy €S Oy, {=w, sin 8, If the strength of the vortex is
denoted by 17 the velocity potential in the closed tunnel at
the points x, w, 8 is given by von Kdrmdn and Burgers, for
negative values of r, as

I'dn (= 00
—— ¢ 9
i Nt (@)
where
Slv-:i > 2 o8 m(g—By)e M EmD lerl(,,);l'qf))!!]@(')\x@{))
=0 s=1 . 4 2 ,
(1 )\x21,2> )‘SJW ()\8’)
2(g—ur) .
i P2 - (0)

(It should be noted that the quantity ¢ appearing in these
equations is merely a variable of integration and has no physi-
cal significance.) The quantity o, (A w) 18 a Bessel function
of the first kind of the order m. The summation with respect
to m cxtends over all the positive integers and meludes
m=0; the prime added to the summation sign indicates that
a factor % must be inserted before the term corresponding to

m=0. The summation with respect to s for every m
extends over all positive roots of the equation
Jn' (N)=0 4

where J,," (\) is the derivative of the function /,,(A\o) with
respect to its argument. The notation used throughout this
paper for the Bessel functions is that of Watson (reference
13), which is the same as that of the Smithsonian tables
(reference 14).

By differentiating @ with respect to ¢ and then mtegrating
with respect to £, as indicated in equation (2), the velocity
potential becomes finally

A CLOSED-THROAT CIRCULAR WIND TUNNEL 3
I”(Z‘I] » e (/')\’IJM()\S“)>
g 14 B
7”.2 VILZ=()§ 1__ ”LZV QJ 2 s
N 22 )\S m ()\x')
&
. S (Nt
[m, cos By sin m(0—0,) fﬂ(ws —9)+
0

)\x Sil] 0U 0SS 7”(0—00) Jm’()\swo)]

As pointed out, this expression applies only at negative values
of .  As will be seen later, the necessary results for positive
values of x can be derived from considerations of symmetry.

By means of equation (5), it is possible to evaluate the
wall interference associated with both airfoil camber and
thickness for the case of the incompressible fluid. These
results can then be modified for the effect of fluid com-
pressibility by the methods of reference 4. It is found
finally that, for a closed-throat circular tunnel, the effects of
interference between the walls and the airfoil camber are
identical with the corresponding interference effects for the
same airfoil spanning a closed-throat reetangular tunnel, the
height of which bears a known relation te the diameter of
the civcular tunnel. A similar conclusion is obtained regard-
ing the effects of interference between the walls and the air-
foil thickness, except for a numerical difference i the
relation between the diamecter of the given circular tunnel
and the height of the equivalent rectangular tunnel. The
interference effects associated with the wake of the airfoil
are not analyzed in detail, but their magnitude can be
estimated with reasonable accuracy by comparison with the
results for the thickness effect. In order to simplify the
complex mathematics of the problem, the interference effects
are calculated only for the scetion of the airfoil at the center
line of the tunnel. As will be seen later, however, experi-
mental data indicate that the results are applicable at any
spanwise station.

Camber effect.—To analyze the effect of the interference
between the tunnel walls and the airfoil camber, the thickness
and wake of the airfoil are considered to be removed and the
airfoil reduced to its mean camber line.  The resulting infini-
tesimally thin airfoil may then be replaced by a sheet of
continuously distributed, bound vortices which, in the general
three-dimensional case, consist of both spanwise and chord-
wise vortices. The veloeity induced at any given point on
the camber line is then obtained by integration over the entire
vortex sheet, As in all thin-airfoil theory the distribution
of bound vorticity must be such that the resultant of this
induced velocity and the free-stream velocity is tangential
to the camber line at all points.  As will be seen, however,
the actual theoretical determination of the distribution of
vorticity is not nccessary in this case.

In caleulating the velocity field of the vortex system, it is
assumed that the bound vorticity is distributed in the middle
plane of the tunnel—that is, in the zy-plane-—rather than
along the camber line and that the induced veloeity at any
point on the camber line is the same as the induced velocity
at the corresponding point in the sy-plane.  From equation
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(5), the veloeity potential at any point », w, # for a vortex
element on the y-axis at the point y=7 (6,=0, wy=7n) is

bom— ) ! Z i msin mg e M ’J,,,()\Qw)Jm )
(1 o ) N2 2O

The term for m=0 disappears by virtue of the factor m in
the numerator of the general term.  The vertieal induced
veloeity # in the incompressible fluid is then

(6)

., _06_6 00, 3¢ dw
© T2z 060z dw oz

For points in the ay-plane (=0, w==1), gw 0 and gﬁ =

Thus, at points in the ay-plane,

(ln °° AT (NG e
wr’ m—] ,c ny (1

The complicated double series i this equation can he
reduced to a single series and the mathematics of the problem
greatly simplified by limiting the discussion to the chord-
wise section of the airfoil at the center line of the tunnel
(y=0, z=0).  From the known relations for Bessel functions
(cf. reference 13), for y=0

m<>‘s77) ’
)2))\2‘]177 (}‘]> (l)

P

z

J1(Asy)

Ay =1/2

S m(NY)

"y =0 for m>>1

Thus, at points on the r-axis,
Trdn < At T (M)

T T g 24 (1 xr)m]l (A7) "

where the summation with respect to s extends over all the
positive roots of the equation

JV (N ) =0 (9)

From Bessel’s differential equation

JV(NT) "'“(1 —)\]-z;ﬂ)']]()\s") (10)

where the double prime denotes the second derivative of the
Bessel function with respect to its argument. Equation (8)
can thus be written

p TS (Aan)
z 2mry ,y:—.]l )\S')Jl()‘sr)JlN()\sr)

(1)

As mentioned, this equation i1s valid only for negative values
of x.

It is apparent that the series in equation (11) is rapidly
convergent for large negative values of z, but that the con-
vergence 1s slow for small negative values. Since in the

evaluation of the velocity induced by the vortex sheet it |

f:ly 2.\

is the small values of « which are of primary importance,
equation (11) eannotl be applied directly in the present case.
It is possible, however, by means of a method demonstrated
by Watson (reference 15), to express the series of this equa-
tion as a combination of clementary functions and a series
of ascending powers of z and 5. The resulting series is
readily applicable to the present problem.

The detailed procedure for the transformation of the series
of equation (11) is given in Appendix A, By application
of the final result, equation (11) may be written.

ooy gy AN() Dy l:__
2 nry S NGT NS (N 2w |

ii (*1) e p+l)7721\+} A B
FUETT)T(2p -+ 1) 1220 26

k=0 p=0

77‘2 + 772 o rr

2m 2yt

(12)

The double summation extends over all integral values of £
kel

and p from zero to positive infinity.  The numerical coefhi-

clent u's04 41 =p"2, is given by the integral

;o 1 2 PR 1) ‘
T T 1

Here /,(t) is a modified Bessel function of the first kind of
order unity, and 71,/(f) denotes the derivative of [,(#) with
respect to its argument. The numerical values of u'y, for
3, 4, are evaluated by means of a series expansion
in Appendix A.

It is readily shown that the first term on the right-hand
side of equation (12) agrees with the induced velocity com-
puted for =0 by the more elementary theory of tunnel-wall
interference which considers only the effects of the trailing
vortices and their images. To this end, consider the two-
dimensional flow in a plane normal to the axis of the tunnel
an infinite distance downstream (fig. 2). The theory states
that the induced velocity at a given point (y, z) in this plane is
twiceasgreat as the induced velocity at the corresponding point
in the plane a=0 (ef. reference 12, p. 260). In the plane
r== o the trailing vortices of the U-shape vortex previously
considered constitute a vortex pair having an infinitesimal
spacing dn and situated at the point y=x, z=0. The circu-
lation of each vortex of the pair is I'” and is directed as shown

re dr]
7 {
1y -
\ /(OO)
Y
Z
FinUrE 2. Section through tunnel at infinity downstream.
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in figure 2. The boundary condition that there shall be no
flow normal to the wall of the tunnel can be satisfied by the
introduction at the point z=0, y==r*/y of an image vortex
pair with a spacing »%dn/9? and with the circulation of the
vortices directed as indicated.  The vertical velocity induced
at the tunnel center by the trailing vortex pair is
’

(o=

2wy
and the vertical velocity induced at the same point by the
image vortex pair is

o (ln

‘>1r<>

The total vertical veloeity at the center of the tunnel at
2= is then the sum of these two velocities; that is,

T7dn (r* 4-1%)

27yt

F’(ln

o ! —
tay (o)== Qi

v ()= — (14)
The vertical velocity at the center of the tunnel at =0 is
onc-half of this value, or

dn(r2 49
e/ (0) =~ 4rrin? )

(15)
This value agrees with the result of equation (12) for the
special case x=0. Thus, the first term on the right-hand
side of equation (12) represents the vertical induced velocity
on the center line of the tunnel at 2=0 and is attributable
entirely to the trailing vortices and to the interference
hetween these vortices and the tunnel walls. The remaining
terms represent the variation in induced velocity due to a
displacement a distance x upstream from the origin.  These
terms arise both from a change in the effect of the trailing
vortices and their wall interference and from the now-active
effect of the transverse bound vortex and its interference
with the tunnel walls.

Although equation (12) was deduced for negative values
of x, it can be shown that it is applicable to positive values
of x as well. According to von Kérméan and Burgers (ref-
erence 12, p. 267), the vertical induced velocity at —z is
related to the corresponding veloeity at +z by the equation

v/ (—x)y=n"(=)—2,"(+r)

By virtue of this relation, together with the fact that

J(0) = 5 02 (), it follows that

v/ (Fa) =0/ (0)=—[r./ (—a)—2./(0)] (16)
That is, the difference between the induced velocity at a
given station z and the induced velocity at =0 must be
an odd function of ». The terms containing z in equation
(12), which were derived to represent this difference for
negative values of the variable, are seen to constitute pre-
cisely such a funetion. Thus the expansion of equation (12)
is valid for positive as well as negative values of .

UPON AN AIRFOIL SPANNING

]

A CLOSED-THROAT CIRCULAR WIND TUNNEL

ey,

\

~Infinitesimally thin airfoil spanning closed-throat circular tunnel.

F1GURE 3.

The vortex sheet which represents the entire airfoil can
now be built up by the superposition of U-shape vortices in
the ay-plane, and the total induced velocity found by inte-
gration of equation (12) over the entire system. The leading
edge of the airfoil is placed on the y-axis as shown in figure 3;
the trailing edge then lies at z=¢, where ¢ is the chord of the
airfoil. The circulation of an elementary vortex having an
infinitesimal span dq and situated at the point x=§, y=rnis
taken to be (dD’/dg)dE, where (dT7/dE) is the vorticity per
unit length of the chordwise scetion at the station y=n.
The vertical velocity induced at the chordwise station x on
the center line of the tunnel by a single clementary vortex is
given by equation (12) if # and T’ arc replaced by (z—%)
and (dD’/dg)dg, respectively. The total vertical veloeity
induced by the complete airfoil is then given by the double

integral
- r{e—§) 7_*_

] J‘CJ‘+'r<(11">[_z‘2+n2 ,
Cdmr Jo J o\ dg mt gty (e— 8

ki i (— 1P 201417 i §) ZDH:' dn dE

L) (2p | 1) 125205050 (a7

The integration of equation (17) requires a knowledge of
(dT7/dE) as a function of 5 and £  Theoretically, (dT''/d§)
could be determined from the requirement that the induced
vertical velocity at cvery point on the camber line must
be such that the resultant of this velocity and the {ree-
stream velocity is tangential to the camber line. This
method of procedure leads, however, to a complicated double
integral cquation, the solution of which does not appear
feasible. Some assumption concerning the distribution of
vorticity must therefore be made if the problem is to be
solved.
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To aid in the choice of a suitable assumption, experiments
were carried out to determine the pressure distribution, both
chordwise and spanwise, over an airfoil spanning a closed-
throat circular tunnel. The airfoil used in the experiments,
which are described detail later in the report, had an
NACA 4412 section and was untwisted and of constant chord.
The results of these experiemnts reveal that for such an
arrangement the lift is sensibly uniform across the span for
angles of attack below the stall.  This fact is illustrated in
fignres 6 and 7, which show the experimental spanwise
lift distribution for the airfoil at various angles of attack in
wind tunnels affording chord-diameter ratios of 0.357 and

0.625. These results were at first regarded as rather sur-
prising.  Later, however, it was realized that they are only

what might logically be expected from general considerations
of the conditions of flow in a closed-throat tunnel. A
demonstration of this fact is given in Appendix B, in which
it is shown that the Lift distribution is uniform across an
untwisted, constant-chord airfoil spanning any closed-throat
wind tunnel, irrespeetive of the cross-sectional shape of the
tunnel.  Detailed examination of the pressure distributions
from which the results of figures 6 and 7 were obtained
reveal further that at a given angle of attack the chordwise
pressure distribution is sensibly the same for all spanwise
stations on the airfoil; that is, the lift per unit chord at any
given chordwise station is constant across the span. It is
to be expected that this result, though obtained for a par-
ticular airfoil, will be equally true for any ordinary camber-
line shape. Thus it is reasonable to assume that the dis-

([ en Y,
J-r Mt g ()

o L § \r | (r— 5)
- e >0 {“

tom
nv e->1)

w—p T

(4= )

The integration with respect to 7 ol the double series in
equation (18) presents no difficulty. The expression for
.’ thus becomes after integration

N5 =D L;p 1) L .l_jg 2p 41 ‘
=0 DZ—)—U k- DT 2p+11(2k+1)22 < ) J(/.E (19)

For constant spanwise circulation, the trailing vortices
finally disappear in the integration with respect to . The
integrand of cquation (19) thus represents the increment of
vertical velocity induced by an elementary vortex of constant
circulation completely spanning the tuunel.

It will now be assumed that the chord of the airfoil is
small enough as compared with the dimensions of the wind
tunnel that powers of (x—§)/r greater than the first may be
negleeted in the integrand of equation (19).  This is equiva-
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tribution of bound vorticity is not a function of the spanwise
position on the airfoil; that is, (dT''/d¢) is independent of 1.

On the basis of this assamption, equation (17) may be
written

I R A0 RN (I e ot S C et N
" Hwﬁ (ds).f_r[ ey sy

i 5: A(V_A 17w zu+p+1)77 (»;—%)ép: :Id77 dg

=0 p=0 KLRHT1)H(2p-F1)12%p2 it
and the integration carried out with respect to 5. The first
two terms of the integrand, however, become infinite at the
pomt y=0. Thesc singularities, which are due to the effects
of the vortices trailing from the vortex elements on the
r-axis, require that special care be taken in the integration.
The evaluation of the integral must be carried out from —r
to —e and from 4 ¢ to 47, and to the resulting function
must be added the effects of the trailing vortex pairs of span
2e which straddle the z-axis. The limit of this sum must
then be taken as e tends to zero.  The vertical velocity
induced at the point # on the w-axis by the vortices trailing
from a vortex clement of span 2e symmetrieally placed at

2(—8)

r=& y=01s
o, bdry2 ¢
rz 4#(([5)[6—'_6\6 Jr(f—f)][

Since the first two terms of equation (18) contain only
sccond-order powers of %, the integrals from —» to — e and
from --e to +» will be equal. The integral of these two
terms with respeet to n thus becomes finally

r(x—§)

ol & ]
2y (2 g>2]”’+ [ﬁ Fr—p?

re I ‘) Jr( S)

) € +(.L—~E) S -" E)

lent to assuming that powers of the chord-diameter ratio
(e/d) higher than the second may be neglected in the final
cquations for the tunnel-wall corrections. The approxi-
mation is accomplished by expanding the first term of the
integrand in ascending powers of (x—£)/r and discarding all
terms coutaining powers higher than the first and by retain-
ing only the p=0 terms of the double series. This gives for
the induced veloeity

(18)
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.
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which may be written

o ar” 1 r—¢f 1
n' 27rf<d$ + r? l:
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By substituting the numerical values for the coefficients
w2y Trom equations (A20) of Appendix A, this equation
may be written to an aceuracy of three significant figures as

L (edtNT L 0579 .
(3"'211.((/5)[}1};5 e “—9]@ (20)

The foregoing result, which was derived by assuming the
fluid to be incompressible, can be modified for the effect of
compressibility by the methods of Goldstein and Young.
The modification is most readily performed by means of the
so-called “Method 11" (refevence 4, pp. 5-6), which compares
the compressible and incompressible flows for equal values of
cireulation.  If the Mach number of the compressible flow
at the position of the airfoil is denoted by Af, it is readily
shown on the basis of this method that for a given distribu-
tion of vorticity the vertical velocity induced in a compres-
sible Aluid at any point on the center line of a tunnel of radius
ris y1—Af2 times the corresponding velocity at the same
point in an incompressible fluid in a tunnel of radius
ry1—AM?  Thus, from equation (20), the vertical velocity

2./ m a compressible fluid in the actual tunnel of radius r is

o N1=Me c(dr' 10579 T,
e o f i) Lo r*f(l~z\12>('r”%f’]”& =

The first term of this equation represents the vertical veloeity
that would be induced by a vortex sheet of infinite span in an
unlimited fluid field. The second term thus represents the
interference effect of the tunnel wall.

Equation (21) may be compared with the corresponding
result from reference 5, which discusses the wall interference
for an airfoil in a closed-throat two-dimensional-flow wind
tunnel.  After alteration to conform with the notation and
sign conventions of the present paper, equation (41) of refer-
ence 5 gives for the vertical velocity at the camber line of an
mlinitesimally thin airfoil mounted on the center line of
two-dimensional-flow tunnel of height A

o N1=M? ‘((11") j ? L e o
7 op f, de M a— s onr— A Y | @)

C'omparison of equations (21) and (22) shows that an infini-
tesimally thin airfoil spanning a closed-throat cireular tunnel
ol radius » experiences at its midspan section the same inter-
ference as would be experienced by the same airfoil in a closed-
throat two-dimensional-flow tunnel of height

h r=1.686r

_ ™
v6(0.579)
or, in terms of the tunnel diameter o,
hi=0.843d (23)

This result. makes the later determination of the interference
correetions for the cireular tunnel very simple, since the cor-
rections for the rectangular tunnel are already known.

1t is readily shown by means of equation (6) that the vortex
system which represents the infinitesimally thin airfoil in-
duces no axial velocity at any point in the azy-plane. It
follows that airfoil camber has no effect upon the axial ve-
locity or pressure gradient at the position of the model.

795221 19 -2

Thickness effect.—The interference effeets associated with
airfoil thickness can be found by reducing the given airfoil
to its base profile and analyzing the interference between the
tunnel wall and this profile.  The base profile is defined as
the profile the airfoil would have if the camber were removed
and the resulting airfoil placed at zero angle of attack. 101t
is assumed that no wake is present, the interference between
the tunnel wall and this symmetrical airfoil can be found by
applying the results of cquation (5) to Lock’s method of
analysis of the interference on a symmetrical body in two-
dimensional incompressible flow. (Lock’s original analysis
appears in reference 1; an alternative explanation of the
method is given by Glauert in reference 2, pp. 52-57.)

Lock’s method of analysis, which assumes that the chord
of the airfoil is small as compared with the dimensions of the
tunnel, consists essentially in replacing the given symmetrical
airfoil by an equivalent two-dimensional source-sink doublet
and caleulating the interference between this doublet and
the tunnel boundaries.  The strength of the doublet in any
given case is proportioned so that it induces at a considerable
distance from itself in free air a veloeity equal to the velocity
induced at the same point by the original airfoil. In the
two-dimensional case, the interference flow at the position
of the airfoil is then readily found by introducing an infinite
series of images of the doublet such as to satisfy the condition
that there shall be no flow normal to the tunnel boundaries
and caleulating the velocity induced at the airfoil by this
system of images. For an airfoil spanning a closed-throat
rectangular tunnel at mid-height, the net result of the wall
interference for the incompressible case is to inercase the
effective axial velocity at the position of the airfoil by the
amount

AL TH
AV =g

where pis the strength of the doublet used to represent the
airfoil. 1t 1s shown in references 4 and 5 that the effeet of
fluid compressibility is to increase this interference velocity
by the factor §/[1— (M")?F, where M’ is the Mach number
of the undisturbed stream in the tunnel. Thus, in the com-
pressible case,

_TH (24)

A 1’:() 1_(‘,11 /)‘2}372

R

The problem ol the symmetrical airfoil i a closed-throat
circular tunnel can also be solved by replacing the airfoil by
an cquivalent doublet spanning the tunnel.  In this case,
though, the interference for the doublet cannot be found hy
the method of images. If the doublet used is composed,
however, of two vortices in a plane normal to the steam in-
stead of the customary source and sink in line with the
stream, the interference velocity can be calculated by means
of equation (5). Since the velocity fields of the two types
of doublets are identical, the interference caleulated by means
of the vortex doublet is the same as that which would be
obtained if the source-sink doublet were used.

Consider a vortex element of circulation ' and span dy
at the point w,, 8, in the yz-plane (fig. 1). From equation (5),
the streamwise velocity ¢ induced at any point iz, w, 6 up-
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stream from the origin by this element and its accompanying
trailing vortices is
o, /,,”a(b . l‘/(ln I~ ¢ ']m()\.sw)
Ty or - 2 Z Z Va -X
s T =0 =1 m N
lw)\ 22 Nl (Nsr)
8

c]("ﬂx

l:m cos @, sin m(6—6,) ‘w”)+

Ao s 8, cos m (08— 6,) J,,,’()\,\.w(,)jl (25)

At a point in the widdle plane of the tunnel (ey-plane),
=10, w=1y, and the velocity is

, I”([T] ~, (]m()\ /l/)
T g %:—{HZ:, m?
' < )\7),>)\ J 2 ()

']m ()‘ (’-’(

X
l:— m cos 8, sin mb, 4\, sin 6, cos mb, J,,’ ()\gwo):]
(26)

As before, the double series in this equation reduces to a
single series if the discussion is limited to the interference at
the center line of the tunnel.  For points on the center line,

J«) ()\x']/):!](l((» =1
€]m O\J/) :J,,L(O) =0 f()l‘ m g 1
and the streamwise induced velocity becomes

o Ddypa T sin 6y (Nswp)

re = ) S 27
Y DR A 7
IFrom the known relations for the Bessel functions

Jo' (Nw) = — (A w) (28)

so that equation (27) may be written

T dn & e sin By (M)
P 7 Goe/ 1 LA ¢
21r)"§ JNT) (29)
As required by equation (4), the summation with respect to
s in this equation extends over all positive roots of the
equation
9]0/()\.\-") - v']l ()\\'):() (30)

As the next step, consider a pair of symmetrically placed
slementary vortices composed of a vortex of cireulation — I/
at the point wy, 6, and a vortex of circulation +T17 at the
point wy, 0, From equation (29), the streamwise velocity
mduced at a point on the center line of the tunnel by this
vortex pair and the accompanying trailing vortices is ‘

fr Ty A7 sin o (N o) ;
! wr? = J2N) G
which may also be written

N QR — %E‘i‘io Sill 0(,’([777 he IJl( Sw()) .
) 27""2‘*’() s=1 t]() (Asr) (32)
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The expression (2w, sin 8,) which appears in this equation
is the product of the vortex strength and the distance between
the vortices.

Now let the distance between the vortices tend to zero
while the vortex strength increases in such a way that the
product (21Vw, sin ,) retains a constant value wp. The
result in the limit is an clementary vortex doublet of strength
w and span dn at the point wy=n on the y-axis. The
streamwise veloeity induced on the center line of the tunnel
by this clementary spanwise doublet and the accompanying
trailing vortex doublets is then

> Hj']l ()\\‘0)

,’/4,*#(117 D]
Je2(nr) (33)

(AP 2
2wy 5=1

As before, the infinite series in this cquation is rapidly
convergent for large negative values of &, but the convergence
is slow for small negative values and is nonexistent when
r=0. Once again, however, the series can be expressed as
a combination of elementary functions and a power series
which is readily applied to the problem at hand. The
details of the transformation are given in Appendix A.
By means of the final result, equation (33} can be written

1,/:_M(l7l oo e i (= 1) we g pryn™a?
z At 2(’72_*"[2)3/2 =i A‘(A—{*])‘(‘)l))"z)“‘ 2k 4-2p-4-t

(34)

where the double summation extends over all integral values
of k and p from zero to infinity. The coefficient popypin=
u2y 18 given by the integral
B 1 =t e
SRCTARTEN M R0 (59)

The numerical values of this integral for =
evaluated in Appendix A.

The induced velocity for a doublet spanning the tunnel is
now readily found by taking the doublet strength u constant
across the span and Integrating equation (34) with respect
to g from —r to 4-r. This gives finally

.3
r) = — M
z 2’}1’]"2 .1'3\] 4 .I"

In the integration across the tunnel, all the trailing vortices,
of course, disappear.

It is apparent from the symmetry of the problem, that the
streamwise veloeity induced by a doublet spanning the tun-
nel must be an even funetion of the variable z.  Equation
(36), which was derived for negative values of #, 18 seen to be
such a function and is thus applicable to positive values of
the variable as well.

The values of »,” for vanishingly small values of », that is,
at the position of the doublet, is then found from equation
(36) by expanding the first term in ascending powers of «/r
and discarding all terms containing second powers and
higher and by retaining only the p=0 terms of the double
series. This gives.

, 2, 3, 4 arc

N (— D Puoipnyna?
§§.m+1>'<zm'<%+1> %) ]
(36)
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After substitution of the numerical values for the coefficients
u2cern, from equations (A33) of Appendix A, this equation
becomes to an accuracy of three significant figures

1.356u

' K ) (38)

Pr = T oy 2xr
The first term of equation (38) is the veloeity induced by a
doublet of imfinite span in a field of unlimited extent. The
remaining term therefore represents the effect of interference
hetween the doublet and the tunmel wall.  Thus the net
result of the interference between the airfoil thickness and
the tunnel wall for the incompressible fluid is to increase the
effective stream veloeity at the position of the airfoil by the
amount
1.356u

rr
AV = Qa1

(39)
In any particular case, 4 is again equal to the strength of the
doublet used to represent the given airfoil.

The result of equation (39) can be modified for the effect
of fluid compressibility by the method of reference 4. In
this case, the modification is most conveniently performed
by means of Method I (reference 4, pp. 3-5) which compares
the compressible and imcompressible flows for a given airfoil
of unaltered shape and size. By this method, it is readily
shown that the streamwise velocity indueed in the incom-
pressible fluid at any point on the center line of a tunnel of
radius r is 1/\/1—(;11’)2 times the corresponding velocity at
the same point in an incompressible fluid in a tunnel of radius
r\/] — (M’)*. Here M’ is, as before, the Mach number in the
undisturbed stream. The inerement in axial velocity in the
compressible case is thus

O T a— LB (40)
2mr?[1 — (M7 )P

C'omparison of equations (24) and (40) shows that, if no
wake is present, a symmetrical airfoil spanning a closed-
throat circular tunnel of radius r experiences at its midspan
section the same inerease in axial velocity as would be ex-
perienced by the same airfoil in a closed-throat two-dimen-

sional-flow tunnel of height

™
]bQ =

e e ] RFRp
V3(1.356) /108

or, in terms of the tunnel diameter,

bl

hy=0.779d (41)

The foregoing result greatly simplifies the determination of
the true stream conditions at the position of the airfoil in the
circular tunnel, since the necessary equations for the ree-
tangular tunnel are already known.

Consideration of the symmetry of the system formed by a
hase profile spanning the middle of a circular tunnel indicates
that the intereference between the wall and the airfoil thick-
ness does not influence the vertical induced veloeity »,’ at
any point on the airfoil.  Similarly, the airfoil thickness has
no effect upon the streamwise pressure gradient in the tunnel
at the position of the airfoil,

Wake effect.—It is shown in general terms in reference 5

‘that the interference between the wake of a body and the

walls of a closed-throat wind tunnel gives rise at the position
of the body to a velocity increment and a streamwise pres-
sure gradient which arc pot present in free air. This is true
for any type of body and any shape of tunnel test section.
The magnitude of this velocity increment and pressure
gradient in the case of an airfoil spanning a closed-throat
rectangular tunnel can be determined approximately by
replacing the wake by the flow from a suitable fluid source
and the tunnel walls by an infinite system of image sources.
In the case of the airfoil spanning a closed-throat circular
tunpel, this treatment is no longer possible, since no system
of image sources is known which will satisfy the boundary
conditions at the tunvel wall. A more complex method of
analysis could conceivably be devised for this case; however,
since the calculation is highly approximate even in the case
of two-dimensional flow, such an analysis does not appear
warranted. For present purposes it is probably sufficient to
assume that the midspan section of the airfoil in the circular
tunnel experiences the same velocity increment and pressure
gradient as a result of the wake interference as does the same
airfoil in a rectangular tunnel of a height defined by cqua-
tion (41). This assumption leads to the simplest expression
for the final correction to the measured drag coefficient and
should give results which are reasonably accurate. 1If it is
assumed that the center of the wale lies in a horizontal plane
containing the diameter of the tunnel, it follows from con-
siderations of symmetry that the wake interference does not
contribute to the vertical induced velocity »,” at the airfoil.
It has already been indicated that the interference as-
sociated with the camber of the airfoil has no effect upon the
stream velocity at the model. The total increase in velocity
for the complete airfoil in the circular tunnel is thus given by
the sum of the increments caused by the thickness and the
wake of the airfoil. In reference 5 it is shown that for the
analagous casce of the airfoil in the rectangular tunnel, the
true velocity V7 at the position of the airfoil may finally be
written
( 1 1+0.4M) )

bo T e T

U=y 2

I/7: V’

where o and 7 are factors dependent upon the size of the air-
foil relative to the tunnel, A is a factor dependent upon the
shape of the base profile, and ¢,/ is the drag coefficient of the
airfoil as measured in the tunnel.  The first correction term
in this cquation represents the velocity increment caused by
the airfoil thickness and is found by substituting the proper
value for the equivalent doublet strength in cquation (24).
The second correction term represents the veloeity incerement
associated with the wake of the airfoil.
The factors ¢ and 7 in equation (42) are defined by

20

N i (}2) (44)

and
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where (e/h) is the ratio of the airfoil chord to the tunnel
height.  An analytic expression for A is given in equation (3)
of reference 5. Values of A for a number of base profiles are
given in table I, which is reproduced from this reference.

If it is assumed that the height of the equivalent rectan-
gular tunnel with regard to the wake interference is the same
as that given by equation (41) for the thickness interferenee,
the true velocity in the eircular tunnel is found simply by
substituting ks from equation (41) for A in the factors o and r
of equation (42).  The true veloeity at the midspan section
of an airfoil spanning a circular tunnel is thus

{ 1

14042 )
T ey et

1— (M) 72(‘4/5 (45)

where the factors 7, and o are defined by

r.—0.321 ( ]> (46)
02*—0.1;355)<2>2 (47)

A correetion to the stream velocity implies corrections also
to the stream dynamic pressure, Revnolds number and
Mach number.  These corrections for an airfoil spanning a
rectangular tunnel have been determined in reference 5 on
the basis oi the assumption that the flow is adiabatic
The corresponding corrections for the circular tunnel can
Le found by veplacing the factors 7 and ¢ in equations (29),
(32), and (33) of reference 5 by the factors =, and ¢, of the
present paper. The true dynamic pressure ¢, Reynolds
number R, and Mach number A7 at the midspan section in
the circular tunnel are thus related to the corresponding
quantities in the undisturbed stream (denoted by primes) by
the equations

ard

L 2y T2 ([ 04 )
q==q (I+[1“(1‘1,,);,]3/2 Ao A (ALY Tol'y 5
(48)

A 0T 0 04 )
s I{ ‘+|1*(‘l’ J¢,4\G)+ ]7(1\[,}. Tg((/s
(49)

10200 (10201 204(ADY
M= A‘[ { l+[] (1 7 ];,, AO’)‘{ 1*(3[’)2 =TTl 5
(50)

Numerical values of the functions of 347 which appear in
these equations are given in table 11, which is reproduced
from veference 5.

At Tow Mach numbers, the terms contaiming  r.e,” in the
cquations for the corrected stream characteristies are usually
negheible as compared with the terms eontaining  Ae,. At
high Mach numbers, however, where the drag coeflicient is
very large, the terms with re,” predominate.

RELATIONS BRTWEEN AIRFOIL CHARACTERISTICS IN TUNNEL
AND IN FREE AIR

The characteristies of the airfoil in free air are now readily

determined in terms of the characteristies at the midspan

849—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

section 1o the tunnel. It is simply necessary to apply the
results of the preceding sections to the relations already
derived in reference 5 for the airfoil spanning a rectangular
tunnel.

Bricfly, the method of reference 5 relates the section char-
acteristics in the tunnel at an undisturbed stream velocity
V7’ to the characteristics in an unconfined stream having a
velocity equal to the true velocity V' which exists at the
position of the airfoil in the tunnel. The relation is oh-
tained on the basis of equal values of the so-called cotangent
component of lift in the tunnel and in free air, this being
necessary to assure that the essential character of the pres-
sure distribution over the airfoil is the same in both cases.
By this procedure corrections are derived which may be ap-
plied to simultancously measured lift, moment, and drag co-
efficients and angle of attack in the tunnel to obtain the cor-
responding quantities in free air. These corrections appear
as functions of the factors A and ¢, of the produet r¢,”, and
of the Mach vumber M of the undisturbed stream. The
correction to the angle of attack, which arises out of the
interference effects associated with camber, is proportional
to ¢ and independent of A and re,’. The correction equa-
tions for the lift and moment coeflicients contain correspond-
ing terms proportional to ¢ alone, together with terms which
depend upon the thickness and the wake effects and are pro-
portional to the products Ae¢ and r¢,/. The correction to the
drag coeflicient appears as two terms, proportional to Aeg
and r¢,/, respectively. The term proportional to Ag is in
this case composcd basically of two parts, one due to the
thiclaess effect and one due to the wake eflect.

The correetion equations for the airfoil spanning a circular
tunnel ean be derived directly by modifying the equations of
reference 5 in accordance with the results of the preceding
scctions,  Since the terms containing ¢ exclusive of A
appear as a result of the camber effect, the tunnel height £
in such terms must be replaced by 0.843d as required by
equation (23).  In the terms which depend upon the thick-
ness and wake effects and are distinguished by the products
Ag and 7¢s, the quantity b is replaced by 0.779d in accord-
ance with equation (41). This involves the assumption
already mentioned that the height of the cquivalent ree-
tangular tunnel with regard to the wake effect is the same
as that calculated for the thickness effect.

As in reference 5, the free-air lift, quarter-chord-moment,
and drag coeflicients referred to the true dynamic pressure ¢
are denoted by the conventional symbols.  The correspond-
ing quantitics measured in the tunnel and referred to the
apparent dynamic pressure ¢ are denoted by the same
symbols with primes added. The final equations for the
corrected acrodynamie coefficients are then

=) fi— o . _(A{/)z Ay —
! 1— (M’ 1= (M)
2— A0+ 0.4M77 )

1— (M) T (51)
A 2=y B
Corepy™ Conys ‘(1 [1— (M7)zpre Aoy
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and the corresponding angle of attack in degrees is

’ 1)7.:))0'1 ? -4
X=q 2?; 1’4 (A‘[”,):) %(‘/‘Jr“l(,‘mﬂﬂ’ ) ()4)

where the factor o) is given by
< C :
a;=0.289 (3) (55)

and the factors 7o and ¢z are as already defined in equations
(46) and (47). Numerical values of the compressibility
factors which appear in these equations are given in table 1.
The corrected quantities correspond to the true Reynolds
number and true Mach number as given by equations (49)
and (50).

From a rigorous standpoint, the foregoing corrections
apply only to data obtained from chordwise pressure dis-
tributions at the midspan section of the airfoil.  Actually,
as has already been pointed out in the discussion of camber
effeet, the experimental chordwise pressure distribution at
any given angle of attack is sensibly constant across the span.
The corrections should therefore be applicable with sufficient
aceuracy to data obtained from pressure distributions at any
spanwise station,

Reference 5 also includes a method for correcting experi-
mental chordwise pressure distributions to free-air condi-
tions in the case of an airfoil spanning a rectangular tunnel.
The same procedure may be applied to pressure distributions
over an airfoil spanning a cireular tunnel if the factor r
is replaced by 7, and the factor ¢ by ¢, wherever it appears
alone and by g, where it appears in the product Ag.

CHOKING AT HIGH SPEEDS

As explained in reference 5, for tests of a model i any
closed-throat wind tunnel, there is some value of the Mach
number A’ of the undisturbed stream which cannot be
exceeded irrespeetive of the power input to the tunnel.
This follows from the fact that at high speeds the combina-
tion of model and wind tunnel acts essentially as a converg-
ing-diverging nozzle, and the flow in the tunnel exhibits the
characterstics of the flow in such a nozzle. Thus, at some
Mach number less than unity in the undisturbed stream,
sonic veloeity is attained at all points across a section of the
tunnel, usually in the vicinity of the model.  When this
oceurs, inereased power input to the tunnel serves merely
to extend the region of supersonic flow downstream of this
sonie section and has no effect upon the veloeity of the stream
ahead of the model.  The tunnel is then said to be ““choked”,
and the Mach number M’ of the undisturbed flow ahead of
the airfoil has its maximum attainable value.  This value is
deseribed as the apparent choking Mach number, the word
“apparent”” being used to differentiate this value from the
corresponding free-air Mach number AL which would be
computed from equation (50).

If it is assumed that the section of sonic velocity is coin-
cident with the section of minimum area between the model
and the tunnel walls, the apparent choking Mach number
can be obtained from elementary considerations of uni-
dimensional adiabatic flow, as shown in reference 5. For
the present case of a constant-chord airfoil spanning a cir-
cular tunnel, the apparent choking Mach number M’ if
finally defined for air (y=1.4) by the relation

i‘ <f"> 1 A/{’ch )
T \d/ ,:]_}_(A/[/cé:)z_]]s (56)

where t, is the “effective’ thickness of the airfoil and d is, as
before, the diameter of the tunnel. A graph of this relation
is given in figure 4. As a matter of interest, the results are
shown for the supersonic as well as the subsonic flow regime.
The region above the curve represents an impossible state
of flow.:

In estimating the apparent choking Mach number in any
practical case it is necessary to replace the effective thickness
t, by the projected thickness ¢, of the airfoil normal to the
direction of flow. As indicated in reference 5, this procedure
leads, in the case of the subsonic wind tunnel, to an over-
estimation of M’, because it neglects the possible con-
traction of a portion of the stream aft of the airfoil as well
as the effect of the airfoil boundary layer.
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Fravre 4.~ Choking Mach number as determined hy airfoi] thickness.
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The importance of the boundary layer and the accom-
panying drag with regard to tunnel choking is pointed out
in reference 5, where the apparent choking Mach number is
calculated for a flat plate at zero angle of attack in a two-
dimensional-flow wind tunnel. Since the projected thickness
for the plate is zero, the unidimensional theory would indicate
that no choking occurs. Actually, because of the fact that
the plate experiences drag, choking does take place.  Similar
considerations hold, of course, for a flat plate spanning a
circular tunnel. In this case the apparent choking Mach
number for air (y=1.4) is given by the equation

(e NH1LAACH [ T 1=
7T<d>(]d - 2.8(1"[/(.),)2 l] \/l []%_1.4(1‘1/”)2] } (:)()

A graph of this relation is given in figure 5. The effect of
drag on choking for supersonic as well as subsonic wind
tunnels is shown. It can be demonstrated that the points
on the curve correspond to a Mach number of unity in the
flow far downstream of the model where the wake has spread
completely to the tunnel wall. Points above the curve
represent impossible conditions of flow. In most cases
encountered in subsonic tunnels, the apparent choking
Mach number determined by the thickness of the airfoil and
defined by equation (56) is usually the lower. For very thin
airfoils at small angles of attack, however, the value of A7,
given by equation (57) can have the lower value. At present
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FiauRE 5.—Choking Mach number as determined by airfuil drag.

no way is known to combine the thickness and drag effects
in a single calculation as should logically be done.

It should be noted, as pointed out in detail in reference 5,
that the flow in a tunnel at choking does not correspond to
any flow in free air. Furthermore, for a range of Mach
numbers just below choking, where the flow is influenced to
any extent by the restrictions which finally promote choking,
any wall-interference correction is of doubtful accuracy.
This is particularly true if the model is at an appreciable
angle of attack so that sonic velocity is attained across the
stream on one side of the airfoil before it is on the other.

EXPERIMENT

The experimental investigation was initiated for two rea-
sons: (1) to determine the spanwise distribution of lift over
an airfoll spanning a closed-throat circular tunnel, and (2)
to examine the validity of the theoretical interference cor-
rections derived in the preceding analysis.  As has been pre-
viously mentioned, the development of the theoretical rela-
tions requires a knowledge of the variation in lift over the
span of the airfoil. Since no theoretical or experimental
evidence regarding this matter was available, the spanwise
variation in lift was investigated experimentally for an
NACA 4412 airfoil for two ratios of airfoil chord to tunnel
diameter. The results of these tests are also directly appli-
cable to the examination of the validity of the theoretical
correction equations.

The experimental work was performed in a low-turbulenee,
nonreturn-type wind tunnel with interchangeable throat sec-
tions of 14- and 8-inch diameter. The two chord-diameter
ratios were obtained by testing the same airfoil in each throat
section. Since the airspeed was held constant throughout
the tests, this arrangement permitted the Reynolds number
and the Mach number to be duplicated simultaneously for
the two chord-diameter ratios. In this manner the effects
of any variation in these parameters were eliminated from
the tests.

The NACA 4412 airfoil was used because a model of suit-
able size was already available ideally equipped for pressure-
distribution tests. The model, which is described in refer-
ence 16, was of 5-inch chord and 30-inch span. This chord,
together with the two throat diameters, gave chord-diameter
ratios of 0.357 and 0.625. In the tests, the airfoil extended
through the walls of the tunnel and was clamped in tight-
fitting support blocks which prevented any leakage of air at
the walls. The 54 pressure orifices located around the sur-
face of the midspan scction of the model were connected to
a multiple-tube manometer for measurement of the pressure
distribution over the airfoil. To secure as accurate pressure-
distribution data as possible, alcohol was used as the manom-
eter fluid and the liquid heights were recorded photographi-
cally.

Pressure-distribution records were secured at each of eight
angles of attack from —4° to 15° at a Reynolds number of
approximately 450,000 and a Mach number of approximately
0.2 with the model mounted in both the 14-inch and the 8-
inch diameter throats. The spanwise distribution of lift was
determined for cach angle of attack by sliding the pressure
orifices laterally from one wall to the other and recording the
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indicated pressure distributions at a number of spanwise
stations. The chordwise pressure distributions were plotted
and mechanically integrated to obtain lift and quarter-chord
moment coefficients.  No drag coefficients were obtained
beeause the experimental installation did not permit balance
measurements to be made and wake surveys were not feasible.

By testing the airfoil in both erect and inverted attitudes
the inclination of the air stream with respect to the tunnel
axis was determined for each throat section. The stream
angle was found to be +0.45° for the 14-inch throat and 0°
for the 8-inch throat. Corrections have been applied to all
angles of attack for the measured angularity.

The spanwise distribution of lift coeflicient uncorrected for
tunnel-wall interference is shown for the two chord-diameter
ratios in figures 6 and 7 in which lift cocflicients at various
angles of attack are plotted as a function of the spanwise
location of the measurement plane.

Curves of hft coefficient against angle of attack for the two
chord-diameter ratios are shown uncorrected for tunnel-wall
interference in figure 8 (). The results given pertain to the
section of the airfoil at the center line of the tunnel.  The
corresponding  curves corrected for wall interference by
means of equations (51) and (54) are shown in figure 8 (b).
In applying the corrections, the term containing re was
necessarily omitted as no measurements of drag were made.
For the values of ¢; to be expected in such tests, however,
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this term would be negligible in comparison with the remain-
ing terms so that this omission does not affeet the final results.
For purposes of comparison, section lift characteristics as
obtained by Pinkerton from tests of a finite-span rectangular
airfoil in the Langley variable-density wind tunnel (reference
17) arc also shown. These data correspond to an effective
Reynolds number of 450,000 and are thus direetly comparable
to the results of the present test.

In figure 9 (a) curves of guarter-chord moment cocfficient
against lift cocfficient are shown uncorreeted for tunnel-wall
interference for both chord-diameter ratios.  The same data
arc plotted in figure 9 (b) after correction for wall interference
by means of equations (51) and (52). Also shown for com-
parison arc the corresponding data from reference 17.

DISCUSSION

An examination of figures 6 and 7 reveals the previously
mentioned fact that there is no appreciable variation in lift
over the span of the airfoil at all angles of attack up to those
closely approaching the stalling apgle. This observation
holds for both chord-diameter ratios. In the vicinity of the
stall a spanwise variation in lift appears which becomes pro-
gressively more erratic as the angle of attack is increased.
As might be expected, this variation becomes apparent at a
lower angle in the case of the larger chord-diameter ratio.
The results of figures 6 and 7 corroborate the conclusion of
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WALL INTERFERENCE
Appendix B for the particular case of the airfoil spanning a
circular tunnel.

From figure & (b), it is scen that the corrected lift curves
for the two chord-diameter ratios agree almost exactly with
one another except at angles near the stall. Below the
vieinity of the stall the corrected data coincide with the
results of reference 17 except for a constant angular displace-
ment of approximately 0.2°. In reference 16, Pinkerton
estimates that his values for the angles of attack may be
too large by a constant crror of approximately 0.25° beeause
of a possible error in the assumed direction of the stream.
1t is thought that the angles of attack of the present experi-
ments are accurate to within £0.1°. These limits of
accuracy are sufficient to account completely for the apparent
angular displacement.

In the region of the stall, the corrected lift curves for the
two chord-diameter ratios do pot mutually coineide, but
the data for the chord-diameter ratio of 0.357 agree with
Pinkerton’s results within 2 percent. As previously men-
tioned, Pinkerton’s tests were made with a finite-span
rectangular airfoil, for which the cross-span variation in
lift 1s necessarily large. Tt 1s not to be expected that the
determination of maximum section lift from such tests
would be as accurate as from tests of a through model, for
which the cross-span Iift variation is small.

It is seen from figure 9(b) that the corrected moment
curves agree satisfactorily with ecach other and with the re-
sults of reference 17.

In summary, for angles of attack below those in the region
of maximum lift, the results presented in figures 8 and 9
demonstrate the validity of the theoretical lift, moment, and
angle-of-attack corrections for low Mach numbers and chord-
diameter ratios up to at least 0.625.  For angles in the viein-
ity of maximum lift, the corrections are not strictly applica-
ble up 1o such a large chord-diameter ratio. The results of
the present test indicate that an accurate determination of
maximum lift can be made with a chord-diameter ratio at
least as high as 0.35.  An evaluation of the accuracy of the
correction equations at high Mach numbers is not possible
on the basis of the experimental evidence available at present.
It is to be expected, however, that the maximum permissible
chord-diameter ratios will decrease as the Mach number in-
creases.

The data of the present paper enable no definite conclusions
to be drawn regarding the validity of the drag correction.
However, in view of the accuracy of the other corrections for
the circular tunnel and in view of the fact that the corre-
sponding drag correction for a two dimensional tunnel is
known to be accurate, 1t is to be expected that this correction
will give a satisfactory cvaluation of the wall interference
upon the measured drag.

The equations of the present paper should not be expected
to give aceurate results when applied to tests in which air
leakage occurs at the tunnel walls. In such tests the Lift at
the walls drops markedly, so that the assumption that the
lift is uniform across the span is no longer valid. The
importance of avoiding such leakage, if reliable airfoil
characteristics are to be obtained, 18 pointed out in reference

UPON AN AIRFOIL SPANNING

A CLOSED-THROAT CIRCULAR WIND TUNNEL 15
5 with regard to tests in two-dimensional tunnels. The
same general considerations apply in the case of an airfoil
spanning a circular tunnel.

CONCLUSIONS

Airfoil data obtained from tests at subsonic speeds of an
airfoil spanning the center of a closed-throat circular wind
tunnel can be corrected to free-air conditions by means of
the following equations:
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where 7., o), and o, are given by
7o 0.321 Ci) (46)

¢ K

o =0.289 <d> (55)
ap=0.339 <§) (47)

and A is a dimensionless factor the value of which depends
upon the shape of the base profile of the airfoil. (See table
T and equation (3) of reference 5.) The remaining symbols
are defined in Appendix C. Numerical values of the func-
tions of M’ which appear in these equations are given in
table II. Experimental pressure distributions can also be
corrected by proper modification of the method of reference 5
as indicated in the text.

Tests of an NACA 4412 airfoil at low speed for two ratios
of airfoil chord to tunnel diameter demonstrate the validity
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of the foregoing equations at low Mach pumbers. At angles
of attack below the region of maximum lift, the equations are
applicable for chord-diameter ratios up to at least 0.625, the
maximum ratio tested. In the region of maximum lift a
chord-diameter ratio of 0.35 is known to be permissible, and
still higher ratios may give satisfactory results. Anp examin-
ation of the validity of the equations at high Mach numbers
is not possible at present, but the maximum permissible
chord-diameter ratios may be expected to decrcase as the
Mach number increases.

The tests also indicate that at low Mach numbers the span-
wise lift distribution on an airfoil spanning a closed-throat
cirecular tunnel is essentially constant exeept at angles of
attack ip the immediate vieinity of the stall. This result
corroborates the gencral conclusion of Appendix B, in which

it i1s demonstrated that the lift is uniform across an untwisted,
constant-chord airfoil spanning any closed-throat wind tun-
nel, irrespective of the cross-scetional shape of the tunnel.

The correction equations cannot be expected to apply at
or in the immediate vieinity of the choking Mach number,
which is the maximum Mach number attainable with a given
combination of airfoil and tunnel test section. The choking
Mach number can be estimated by means of equations given
in the report.

AMES ABRONAUTICAL LABORATORY,
NatioNan, Apvisory CoMMITTER FOR ABERONAUTICS,
Morrerr Frerp, Cavir.



APPENDIX A

TRANSFORMATION OF SERIES OF BESSEL FUNCTIONS

The series involving Bessel functions which appear in the
discussions of the interference effects associated with airfoil
camber and thickness are, as pointed out in the text, poorly
suited for use at small values of the variable 2. It will be
shown here, by means of a method demonstrated by Watson
(reference 15), that the series may each be expressed as a
combination of elementary functions and a convergent power
series.  The resulting series are well adapted for use in the
present problem. The notation used for the Bessel functions
is that of Watson (reference 13) and of the Smithsonian
Tables (reference 14).

Series for camber effect.—The discussion of the interfer-
ence effects associated with airfoil camber involves the series

. A I (W) .
W= - - Al

! sgl)‘xh]l()\xr) ']1”()\314) ( )
convergent for negative values of ». The summation with
respect to < extends over all the positive roots of the equation

JU(N) =0 (A2)
Letting jy=XAy and «==—2z, the series may be written
Jl(]a’?/’) oIl (A3)

”"721 Ji(Ge) i )

where the summation is taken over all the positive roots of the
equation

S (Js) =0 (A4)
Now, consider the funetion
_r SVl = Sy Y00 e g

2 Jyw)
where the quantity 17 is a Bessel function of the second kind
of order unity. This function has a simple pole at cach of
the points w= =+, and is one-valued and analytic at all other
points in the complex w-plane.  Its residue at the point j,

can be shown to be
Jl(jsn/r)‘ Pl s
Gl i (G " (gs)”

which is identical with the general term of the series (A3).
By the theorem of residucs, the integral of the function (A5)
taken counterclockwise around a contour inclosing the por-
tion of the complex plane to the vight of the imaginary axis
is then equal to 2721, The integral along a large semi-
civele on the right of the imaginary axis tends to zero when
the radius of the semicirele tends to infinity through values
such that the semicircle avoids the poles of the integrard.
It is thus necessary to retain only the integral along the
imaginary axis. The contour must, however, have an in-

dentation to the right of the origin, since the integrand has
a pole there with residue (#*+9?)/rq. If the radius of the
indentation is made to approach zero, W, may finally be
written

W, — ;;nn
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From the known relations for the modified Bessel funections,
it is readily shown that

Jy (i) =401, (1)

(:I:zt)*-fl(f)j; WK (1)
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Yi{£it)y=440"(1) + [{1/(1)

where /) and K, are modified Bessel functions of the first
and second kind of order unity. By writing the integral
in equation (A6) in two parts, one along the positive and
one along the negative imaginary axis, and replacing w in

these integrals by it and —it, respeetively, W, then
becomes

.y LYK (ta/r)— 1 (/K@) . ,
W= 9y + J 1) sin (tx/r)dt
or
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The value of the first integral in this equation is given by
Watson in reference 15 as

j K (tn/r) sin (tkfr) dt=

(A8)
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The second integral can be evaluated by expanding the
product [;(tn/r) sin (tk/r) in ascending powers of ¢ and inte-
grating term by term. The series expansion for the prod-
uct 1s
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and the term-by-term integration gives
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The coeflicient p's ey poy=p"2r 18 given by
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which may be written after integration by parts
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This integral is a constant for any given value of 1.
Reverting to the original variable », the expansion for W
may finally be written
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This agrees with the result given without derivation by
Tani and Taima (reference 18).

IFor purposes of computation the coefficient p’y, 18 written

14 1 I ’ «
Wy 77“_2(‘/’1 1) (82— B"2/] (A13)
where
,o 1 R 220/ e
S Tt (Atd)

The quantity 8y, can then be expressed in a form suitable
for computation by means of a method devised by Watson
for an analagous integral (reference 15).

As the first step, the function

4
- -

) (1)]* cos (xt/b) (A1)

is written as a sum of partial fractions, b being a positive

constant whiech will be fixed Iater.  This can be accomplished
by considering the integral

w dw .

f(w»t) [ (w)]? cos (ww/b) (416)

around the civele |w|=~R in the complex plane.
grand of the integral (A16) has poles at the points

The inte-
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where j, 1s a positive
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is the function (A15).
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Now, the integral (A16) taken around the cirele |Jw[=R
tends to zero wben R tends to infinity in such a manner
that the circle never passes through a pole of the integrand.
1t follows {rom the theorem of residues that the sum of the
residues of the integrand at all its poles is zero; thus

(=1 (n-1/2)2F0 par+z

2 2 &=,
rnz'tlx [(nb-b/2)2—2) [ (nb-+b/2))

1" @®)] cos (xtjb)
‘ JET ] =
FED 2 (T oo (b [(/: )’

2f— (wj/b) tanh (=), /b) Jsil

s 7)
It (A7)

By multiplying this equation by cos (#t/d) and integrating
from — @ to -+ o, it can be shown with the aid of certain
integral relations given by Watson (reference 15, p. 36) that

f‘” Bt i (n-+1/2)2b>+1
SO T = ) (e b/2)F

]Y~f'+'-3()71r.7,\-/’)

2w (— 1) \Z Ji2(s) (1 —32)* cosh (w7,/b) I:(Jrj‘“/b) -

2= ) Gl )] (A1S)
and thercfore
L
YorJo (IWOPF T 7= U (nb+0/2)
3 _ ()
(=1’ ZJ1 ])(1— Z)z[(’OShz(fjs/b)
ey e

<)/+1—_]S ) cosh (x7,/b (A 1Y)

The first series in this equation converges rapidly when b is
large, the second when b is small. A reasonable compromise
for purposes of calcuation is to take b=1.

Equation (A19) with b=1 has been used together with
equation (A13) to determine the first four values of the
coefficient u’o;.  The final results are

uo==—0.999
p = —1.627
we=—9.78

ws=—120.8

(A20)

Comparable values of ¢y and u’y to the same number of
significant figures are given without derivation in reference
18. The value of p’;in this latter reference agrees with that
of the present paper but p’, differs by one in the third decimal
place. The value given in (A20) has been carefully checked
for several values of the parameter b and appears to be cor-
rect. Values of p’s and u’s apparently have not previously
been computed.

Series for thickness effect.—The series which appears in
the discussion of the interference effects associated with
airfoil thickness is

(’)“If]] ()\\77)

W= 2y aeoun

(A21)

§=1
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convergent, for negative values of 2. The summation with
respect to s extends over all the positive roots of the equation

Ji(nr)=0 (A22)

Letting j.=Xa and k= —ux as before, the series may be written
W, LU A23

: Jo¥(35) (AZ3)

where the summation is taken over the positive roots of

Ji(j)-0 (A24)

The funetion

m Ji(w)Y, (U’U/’)*Jl(u n/r)Y 1(%’)

Z o wnir ‘\25
> Ji(w) (A29)
has a simple pole at cach of the points w= 47, Its residue
at each of these points can be shown to be identical with the
general term of the series (A23).  Unlike the function in the
previous series, this function is regular at the origin.  Inte-
gration around the portion of the complex plane to the right
of the imaginary axis then gives

W (0w Ji(w) Y (wnfr)—, (wn/r) Y ()

N 27wt ) i 2 Jl (’ID)

we =

(A26)

By applying the first two of equations (A7) and combining
the integrals along the two halves of the imaginary axis as
bhefore, the series becomes

e * K\t /

W= f 1K (In)r) cos ([I\/I)([f‘*‘ - (1) tl (tn/r) cos (Ix/r)di
7 Jo o 1 (&)
(A27)

The first. integral can be evaluated by differentiating rela-
tion (A9 with respect to x. This operation gives

Yoo 2

- Ty
LK (/1) cos (tk/r)dt= ;71 547 (A28
J“ / ( ! ) 2(7]1+K.>)3/z )
The second integral can be evaluated as before by expand-
ing the product t(in/r) cos(tx/r) in ascending powers of ¢
and integrating term by term. The series expansion for the

product is

@ w©

(_ 1)pl¢)(k+p+1) )1\+1 2

tIi(tn/r) cos (Ixfr)- ;pzu Il (ke 1)1 (2p)1 22051 2042001
and the term-by-term integration gives

| .[I)m Ir(%) t1, (tn/r) cos (tk/r) dt

A (— 1) uaippyny 02 T6%? 00"
ST 22 (1)1 (2] 28 e (A29)

where the coefficient pyipy pp1)==pes is given by

(KW L,
Moy ]1(t) t/(h/*

m™Jo

" dt

"fH)w o Ixny A0

Reverting to the original variable z, the expansion for W,
may finally be written

—1) M2<k+p+1)17 i

) ,’.27] ) o
Wy, 57 2 (k+ DI (2p)t 2ottt

2(712—{‘:1?27)73“ (AS 1y

The integral (A30) has been investigated by Watson (re-
ference 15). 1ts value for any given r can be computed from
the series ‘

1 (7 Bdt b ey (nb4-b/2)%

(211 Dy -

1%t %r,,:u I*(nb |- b/2)
o .
(o I (mjfh)
= J (7\) cosh*(mj /by~
o ¢ mielb (A32
@7+ cosh (w7,/b) (A32)

where b is an arbitrary positive constant.  This equation has
been used with b= 1 to determine the first four values of pa,.
The final results are
He—=0.797
wy==1.200
wy=7.46
== 96.2

The first two of these values agree to the three decimal places
with the two numerical values computed by Watson. The
remaining two values have not previously been computed.

APPENDIX B

CONSTANCY OF LIFT OVER AN AIRFOIL SPANNING A CLOSED-
THROAT TUNNEL

Consider an infinitesimally thin untwisted airfoil of con-
stant chord spanning a closed-throat wind tunnel of arbitrary
section. Such an arrangement is shown in figure 10, which
18 a section of the tunnel as seen from downstream. 1t is
assumed that the fow in the tunnel is nonviscous and that
the airfoil therefore has no drag.

Suppose for the time being that the lift varies in some
manner across the span of the airfoil.  Any such variation
will be accompanied by a system of vortices trailing from the
atrfoil and extending infinitely far downstream. If the usual
assumption is made that the trailing vortices are parallel to
the axis of the tunnel, the low pattern in a plane normal to
the axis at infinity downstream must be of the nature shown

Froere 100 Assumed flow pattern in plane normal to tunnel axis at infinity downstreans.
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in figure 10.  The flow pattern, in general, consists of a num-
ber of separate sections within cach of which the flow has a
closed, circulatory character. The line AB, which represents
the projection of the airfoil, extends across every such section,
and each of the sections contains the filaments of a portion of
the system of trailing vortices. The exact character of the
flow pattern in any particular case depends upon the span-
wise variation in lift and upon the cross-sectional shape of the
tunnel.

Now, consider the flow around a streamline within any one
of the separate sections of the flow pattern-—say the stream-
line CD in the section at the left-hand side of the tunnel in
figure 10. This streamline, like all the streamlines, inter-
seets the projection AB of the airfoil in two points, denoted
as C and D in the figure. The fact that in the presence of
the tunnel walls cach streamline must interseet AB in two
points is essential to the discussion. If it is supposed for
purposes of discussion that the direction of flow is clockwise
as indicated, the vertical component of velocity at C is
upward while the corresponding component at D is down-
ward. This direction of flow corresponds to a net circulation
in the clockwise direction for all the trailing vortex filaments
enclosed within the streamline.

At the position of the airfoil the pattern of transverse
velocities induced by the trailing vortices is geometrically
similar to the pattern at infinity downstream, only the
magnitude of the velocities being different.  Henee, at points
on the airfoil directly ahead of point C, the vertical veloeity
indueed by the trailing vortices is upward. At points
dircetly ahead of point D, the velocity is downward. Thus,
since the airfoil is untwisted, the airfoil seetion corresponding
to (! operates at a larger effective angle of attack than does
the seetion corresponding to D, If the airfoil is of constant
chord as assumed, this means that the lift at section C must
be greater than the lift at section D.

As has been pointed out, however, the. trailing vortices
discharged between sections C and D must have a net circu-
lation in the elockwise direction in figure 10. This means
that the circulation of the spanwise bound vortices at sec-
tion D must be greater than at section ¢, Since the direc-
tion of stream flow was taken to be toward the observer, this
in turn means that the lift at section C must be less than
that at section D, which is in dircet contradictiou to the pre-
vious result. The original supposition that the lift varies
across the span thus leads to two mutually contradictory
conclusions and is therefore invalid. It follows that the
spanwise distribution of lift is uniform across an untwisted,
constant-chord airfoil spanning any eclosed-throat wind
tunnel, irrespective of the cross-sectional shape of the
tunnel.

As mentioned at the outset, this result depends upon the
assumption that the airfoil is infinitesimally thin and has no
drag. It will not be strictly true if the inerease in effective
stream velocity caused by the interference between the walls
and the airfoil thickness and wake is not uaiform across
the span.  The result also negleets any effect that the bound-
ary layer along the walls of the tunnel may have upon the
lift distribution. That these approximations are not serious,
at least in the case of the circular tunnel, is indicated by the
experimental results of figures 6 and 7.

The foregoing reasoning is, of course, inapplicable for an
airfoil which does not span the tuznel or for a finite-span
airfoil in free air. In these instances, the projection of the
airfoil does not extend across all of the sections into which
the transverse flow pattern is divided, and the streamlines
of this pattern need not intersect the projection of the airfoil
in two points.  Under these conditions a type of varying lift
distribution can be found which does not lead to a logical
inconsistency.

APPENDIX C
LIST OF IMPORTANT SYMBOLS

e airfoil chord
d diameter of circular tunnel
r radius of circular tunnel
I3 height of rectangular tunnel
Iy height of rectangular tunnel equivalent to circular

tunnel with regard to camber effect
I8 height of rectangular tunnel equivalent to ecircular

tunnel with regard to thickness effect

T 1/4 (%) chord-height factor with regard to wake
effect in rectangular tunnel

T2 0.321 (3 ); chord-diameter factor with regard to wake

effect in circular tunnel

a 47; (%) i chord-height factor with regard to camber
and thickness effect in rectangular tunnel

o 0.289 ((%) ; chord-diameter factor with regard to
-amber effect in eircular tunnel

T 0.339 (:Z i chord-diameter factor with regard to
thickness effect in circular tunnel

A factor depending upon shape of base profile (see
equation (44) and table I)

a angle of attack

¢ section lift coefficient

Coupy section quarter-chord-moment coefficient

¢y section drag coeflicient

% stream velocity

q dynamic pressure

M Mach number

R Reynolds number

r.2  rectangular space coordinates

rw,®  cylindrical space coordinates (see equations (1))

I circulation of single line vortex in tunnel

d1/dg  circulation per unit chord length

7.¢ y and z coordinates of elementary vortex

w0, radial and angular coordinates of elementary vortex

£ chordwise coordinate of elementary vortex; also
variable of integration in equations (2) and (3)

¢ velocity potential

v/ and z components of induced velocity

AV increase in axial veloeity at position of airfoil in
tunnel

" doublet strength

i, projected thickness of airfoil

t. effective thickness of airfoil
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Wi, W, series of terms involving Bessel functions (see equa-
tions (A1) and (A21) of Appendix A)
Ju,Y . Bessel functions of first and second kind of order m
(Watson’s notation)
modified Bessel functions of first and second kind of
order m (Watson’s notation)

]m;I{m

Ne variable of summation defined by the roots of the
equation J, (Ag)=0
7s N root of the equation J,/ (7,)=0

w,w’,, numerical coefficients (see equations (35) and (13))

konyp  variables of summation
tw variables of integration
K alternate variable defined as equal to

Superseripts

" when pertaining to fluid properties, denotes values
in the undisturbed stream in the tunnel; when
pertaining to airfoil characteristies, denotes values
in tunnel, coeflicients being referred to dynamie
pressure q’; denotes first derivative of Bessel
function with respect to its argument

denotes second derivative of Bessel function with
respect Lo its argument

(r/)
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force
(tpara!le)‘.l Linear
0 axis oy . ~
Desguation | S| Symet | Desination Sy | Fostve | Degiga |y (combor | Angute
axis)
Longitudinal._.._.__ X X Rolling__.____ L Y—Z Roll_._.__.__ ) % P
Lateral ___._...______ Y Y Pitching ... M Z—X Piteh _______ 6 v q .
Normal ... Z Z Yawing.._.__. N X—Y Yaw_ ... ¥ w r
Absolute coeflicients of moment ‘ Angle of set of control surface (relative to neutral
L M N osition), §. (Indicate surface by proper subscript.)
o=t =M o= P y
ab " qeS " qbS
(rolling) (pitching) (yawing)
4, PROPELLER SYMBOLS
D Diameter » - P
P Geometric pitch : P Power, absolute coefficient OP—_pnsDﬁ
D Pitch ratio . 5oV
, Z"//f Inflow velocity C Speed-power coefficient = PP;LT"
V. Slipstream velocity r 7 Efficiency
T Thrust, absolute coefficient C’Tzv;fﬁ; n Revolutions per second, rps
p . . Vv
. i) Effective helix angle=tan~! 7~-~—)
Q Torque, absolute coefficient OQ:—?—E 8 2arn
o)
5. NUMERICAL RELATIONS
1 hp=76.04 kg-m/s=>550 ft-lb/sec 1 1b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 Ib
1 mph=0.4470 mps 1 mi=1,609.35 m=25,280 ft

1 mps=2.2369 mph 1 m==3.2808 ft
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